Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

Трехфазный двигатель как работает


Принцип работы трёхфазного двигателя

Электродвигателем называется такое электромеханическое устройство, которое преобразует электрическую энергию в механическую энергию. При использовании трёхфазной системы переменного тока, наиболее широко используется трёхфазный асинхронный двигатель, так как этот тип двигателя не требует в большинстве случаев пускового устройства. Большинство трёхфазных асинхронных двигателей запускается в работу с помощью прямого пуска с использованием коммутационных аппаратов.

Для лучшего понимания принципа работы трёхфазного асинхронного двигателя, необходимо знать его основные конструкционные особенности.

Этот двигатель состоит из двух основных частей, неподвижной части – статора, и вращающейся части – ротора.

Статор трёхфазного асинхронного двигателя имеет слоты (пазы), в которых размещаются обмотки на каждую фазу. Трёхфазная обмотка расположена таким образом, чтобы быть способной создать вращающееся магнитное поле при протекании по обмоткам переменного тока (AC) от трёх источников питания.

Ротор трёхфазного асинхронного двигателя состоит из цилиндрического ламинированного сердечника имеющего параллельные пазы на периферии. В этих пазах расположены проводники, которые замкнуты на конечных кольцах с торцов ротора. Эти проводники в виде стержней образуют короткозамкнутую обмотку ротора типа «беличья клетка».

Проводники на роторе выполнены обычно из алюминия, а также могут быть сделаны из меди или латуни. Пазы для проводников немного повёрнуты на поверхности ротора, поэтому они расположены под некоторым углом к валу ротора. Такое расположение позволяет уменьшить магнитное сцепление в момент пуска двигателя, а также сделать работу двигателя плавной, без рывков и пробуксовки.

Как работает трёхфазный асинхронный двигатель?

Прежде всего, для работы трёхфазного асинхронного двигателя, необходимо создать вращающееся магнитное поле.

Создание вращающегося магнитного поля

Обмотки, которые расположены на статоре, равномерно смещены на 120 градусов относительно друг друга. Обмотка каждой фазы смещена относительно двух других на угол 120 градусов, то есть по обе стороны через 120 градусов расположены соседние фазы. Статор представляет собой полый цилиндр, который в сечении представляет собой кольцо. Внутри такого цилиндра расположен ротор. Три источника тока, отличатся друг от друга фазовым сдвигом. Этот сдвиг также составляет 120 градусов. В итоге, при прохождении трёхфазного переменного тока в обмотках статора, внутри статора образуется вращающееся магнитное поле.

В чем секрет создания вращения магнитного поля? Так как ток переменный, то создаваемое каждой фазой магнитное поле будет также переменным. Магнитный поток, который порождается прохождением тока в каждой обмотке, будет изменяться во времени точно также как породивший его ток. В то время когда один магнитный поток от первой фазы будет возрастать по величине, магнитный поток от второй фазы достигнет своего максимального значения и начнёт убывать по величине, магнитный поток от третьей фазы будет всё более уменьшаться, пока не достигнет своего минимального значения.

Магнитный поток переменного синусоидального тока любой из фаз изменяется по величине и направлению, тем самым чередуясь и пульсируя. Там где ранее был северный магнитный полюс, становится южный, а там где был южный полюс, там на его месте образуется северный полюс. Магнитное поле как бы пульсирует, но не вращается. Если пространственно равномерно по окружности расположить три катушки (соленоиды) так, чтобы их сердечники были направлены к центру окружности, а затем соединить в один общий магнитопровод наружные концы соленоидов (катушек), то мы получим прототип статора трёхфазного асинхронного двигателя. Подключив каждую катушку к источнику переменного тока, а именно к трём разным фазам, которые сдвинуты относительно друг друга на 120 градусов, мы получим не пульсирующее, а вращающееся магнитное поле.

По той причине, что магнитопровод будет общим, пульсирующие магнитные потоки от каждой катушки будут складываться с учётом направления и величины, тем самым образуя вращающийся вектор магнитного потока. Это удивительно, потому как статор неподвижен, но представляет собой магнит, поле такого магнита вращается, но статор остаётся неподвижен!!!

Как же преобразуется в дальнейшем электрическая энергия в механическую энергию? Если в статор, по обмоткам которого протекает трёхфазный ток и, соответственно, внутри него сосредоточено вращающееся магнитное поле, внести металлический предмет, то на него будет действовать механическая сила, которая будет пытаться этот предмет выкинуть из поля статора.

Как такое происходит? Магнитный поток статора индуцирует в короткозамкнутом роторе асинхронного двигателя ЭДС, так как цепь ротора замкнута, то по ней будет протекать электрический ток, который создаст второй магнитный поток – поток ротора. Взаимодействие двух встречных потоков ротора и статора создаст крутящий момент на роторе, и он начнёт вращаться. В соответствии с законом Ленца, ротор будет вращаться в том направлении, которое позволяет уменьшить магнитный поток статора.

Следует заметить, что принцип работы асинхронного двигателя не допускает синхронной скорости ротора с магнитным полем статора. В этом случае исчезнет ЭДС индукции в роторе, и ротор начнёт останавливаться. Синхронизация не достижима для асинхронного электродвигателя, скорость ротора в двигательном режиме может быть меньше скорости вращения магнитного поля.

Если ротору придать дополнительный крутящий момент от внешнего механического источника, так, чтобы его скорость стала больше чем скорость вращающегося магнитного поля статора, тогда электрическая машина перейдёт в генераторный режим работы, при котором происходит преобразование механической энергии в электрическую энергию.

Разница скоростей между статором и ротором позволяет говорить о таком явлении как скольжение ротора в магнитном поле статора. Необходимо помнить, что асинхронная электрическая машина переменного тока – это обратимая машина, которая может работать как в генераторном, так и двигательном режимах.

Краткие практические выводы по трёхфазному асинхронному двигателю

  1. Отсутствует необходимость в контактных кольцах на роторе и в щёточном механизме.
  2. Асинхронный трёхфазный двигатель является самозапускающимся, так как создаётся вращающееся магнитное поле, а не пульсирующее.
  3. Отсутствие щёточного механизма и щёток исключает искрение контактов в работе двигателя.
  4. Долговечность конструкции при правильной эксплуатации и обслуживании.
  5. Экономичность, высокая эффективность (КПД).
  6. Простота в обслуживании.

Дата: 26.01.2016

© Valentin Grigoryev (Валентин Григорьев)

Как работает трехфазный асинхронный двигатель переменного тока

Эта статья и видео будут посвящены основам 3-фазного асинхронного двигателя переменного тока, одного из наиболее распространенных на сегодняшний день типов промышленных электродвигателей. Этот обзор объяснит, что такое трехфазная мощность, как работает закон Фарадея, понимает основные компоненты асинхронного двигателя и влияние числа полюсов статора на номинальную скорость и крутящий момент двигателя.


Вы также можете посмотреть видео ниже для обзора трехфазных асинхронных двигателей переменного тока.


Что такое трехфазная мощность?

Первая концепция, которую мы должны понять о трехфазном асинхронном двигателе, - это первая часть его названия - трехфазная мощность. Однофазный источник питания использует два провода для обеспечения синусоидального напряжения. В трехфазной системе три провода используются для обеспечения одинакового синусоидального напряжения, но каждая фаза сдвинута на 120 °. В любой момент времени, если вы сложите напряжение каждой фазы, сумма будет постоянной.Однофазная мощность подходит для жилых или других приложений с низким энергопотреблением, но трехфазная [JS2] мощность обычно требуется для промышленных или более мощных приложений. Это потому, что он может передавать в три раза больше энергии, используя только в 1,5 раза больше провода. Это обеспечивает более эффективный и экономичный источник питания.


Что такое закон Фарадея?

Другой основной принцип асинхронных двигателей переменного тока вытекает из закона Фарадея.Британский ученый Майкл Фарадей обнаружил, что изменяющееся магнитное поле может индуцировать ток и, наоборот, ток может индуцировать магнитное поле. Используя правило правой руки, вы можете предсказать направление магнитного поля. Чтобы сделать это, представьте, что вы берете прямой провод большим пальцем в направлении тока. Ваши пальцы будут вращаться в направлении линий магнитного потока.


Майк схватил маркер, чтобы продемонстрировать правило правой руки

Компоненты асинхронного двигателя

Асинхронный или асинхронный двигатель состоит из двух основных компонентов: статора и ротора.Статор состоит из наружных обмоток или магнитов и является стационарным. Статор стационарный. Ротор - это внутреннее ядро, которое вращается в двигателе. Ротор вращается.

3-фазный асинхронный двигатель - ротор внутри статора

Конструкция с короткозамкнутым ротором является наиболее распространенным типом асинхронного двигателя, поскольку они являются самозапускающимися, надежными и экономичными. В этом дизайне ротор выглядит как колесо хомяка или «беличья клетка», таким образом, название. Ротор состоит из внешнего цилиндра из металлических стержней, которые закорочены на концах.Внутренняя часть состоит из вала и прочного сердечника, построенного из стальных пластин.

Как это работает

Чтобы фактически достичь крутящего момента на валу двигателя, на статор подается ток. Это создает вращающееся магнитное поле, которое в свою очередь индуцирует ток в роторе. Из-за этого индуцированного тока ротор также создает магнитное поле и начинает следовать за статором из-за магнитного притяжения. Ротор будет вращаться медленнее, чем поле статора, и это называется ‘проскальзыванием.’Если бы ротор вращался с той же скоростью, что и статор, ток не был бы наведен, а значит, и крутящий момент. Разница в скорости колеблется в пределах 0,5-5% в зависимости от обмотки двигателя.


обмоток и полюсов

Трехфазные двигатели доступны в конфигурации с 2, 4, 6, 8 и выше полюсами. Количество полюсов в обмотках определяет идеальную скорость двигателя. Двигатель с большим числом полюсов будет иметь более низкую номинальную скорость, но более высокий номинальный крутящий момент.Из-за этого высокополюсные двигатели иногда называют крутящими моментами и могут использоваться для замены двигателя с использованием коробки передач. Идеальное соотношение между числом полюсов, частотой и скоростью определяется следующим образом:

Соотношение между числом полюсов и числом оборотов асинхронного двигателя.

Заключение

Трехфазные асинхронные двигатели переменного тока

состоят из статора и ротора. Во время работы через статор подается ток, который индуцирует магнитное поле и приводит к вращению ротора.Скорость вращения вала и прилагаемый крутящий момент зависят от рабочей частоты и количества пар полюсов в обмотках двигателя. Если вы заинтересованы в нашей линейке асинхронных двигателей, мотор-редукторов или даже серводвигателей, свяжитесь с инженером KEB, используя контактную форму ниже.


Как работают бесщеточный двигатель и ESC

В этом уроке мы узнаем, как работают бесщеточный двигатель и ESC. Эта статья является первой частью следующего видео, где мы изучим принцип работы бесщеточного двигателя постоянного тока и ESC (Electronic Speed ​​Controller), а во второй части мы узнаем, как управлять двигателем BLDC с помощью Arduino.

Принцип работы


Двигатель BLDC состоит из двух основных частей: статора и ротора.Для этой иллюстрации ротор представляет собой постоянный магнит с двумя полюсами, а статор состоит из катушек, расположенных, как показано на рисунке ниже.

Мы все знаем, что если мы подадим ток через катушку, он создаст магнитное поле, а линии магнитного поля или полюса зависят от направления тока.

Таким образом, если мы подадим соответствующий ток, катушка создаст магнитное поле, которое привлечет постоянный магнит ротора.Теперь, если мы активируем каждую катушку одну за другой, ротор будет продолжать вращаться из-за силового взаимодействия между перманентом и электромагнитом.

Чтобы повысить эффективность двигателя, мы можем намотать две противоположные катушки как одну катушку таким образом, чтобы генерировать противоположные полюса к полюсам роторов, таким образом, мы получим двойную силу притяжения.

С помощью этой конфигурации мы можем генерировать шесть полюсов на статоре всего с тремя катушками или фазой.Мы можем еще больше повысить эффективность, запитав две катушки одновременно. Таким образом, одна катушка будет притягивать, а другая катушка будет отталкивать ротор.

Чтобы ротор совершил полный 360-градусный цикл, ему нужно шесть шагов или интервалов.

Если мы посмотрим на текущую форму волны, мы можем заметить, что в каждом интервале есть одна фаза с положительным током, одна фаза с отрицательным током и третья фаза выключена. Это дает представление о том, что мы можем соединить свободные конечные точки каждой из трех фаз вместе, и поэтому мы можем разделить ток между ними или использовать один ток для одновременного возбуждения двух фаз.

Вот пример. Если мы поднимаем фазу A High или подключаем его к положительному напряжению постоянного тока, с помощью какого-то переключателя, например, MOSFET, а с другой стороны, подключаем фазу B к земле, тогда ток будет течь от VCC через фаза А, нейтральная точка и фаза В, на землю. Таким образом, с помощью всего лишь одного потока тока мы создали четыре разных полюса, которые приводят ротор в движение.

В этой конфигурации мы фактически имеем соединение звездой фаз двигателя, где нейтральная точка соединена внутри, а остальные три конца фаз выходят из двигателя, и поэтому у бесщеточного двигателя есть три провода, выходящие из Это.

Итак, чтобы ротор совершил полный цикл, нам просто нужно активировать два правильных МОП-транзистора в каждом из 6 интервалов, и это то, чем на самом деле являются ESC.

Как работает шаговый двигатель

В этом руководстве вы узнаете, как работает шаговый двигатель. Мы рассмотрим основные принципы работы шаговых двигателей, их режимов движения и…

ESC или электронный регулятор скорости контролируют движение или скорость бесщеточного двигателя, активируя соответствующие полевые МОП-транзисторы для создания вращающегося магнитного поля, так что двигатель вращается.Чем выше частота или чем быстрее ESC пройдет через 6 интервалов, тем выше будет скорость двигателя.

Однако здесь возникает важный вопрос, и вот как мы узнаем, когда активировать какую фазу. Ответ заключается в том, что нам нужно знать положение ротора, и для определения положения ротора используются два распространенных метода.

Первый распространенный метод заключается в использовании встроенных в статор датчиков Холла, расположенных на 120 или 60 градусов друг от друга.

По мере вращения постоянных магнитов роторов датчики Холла обнаруживают магнитное поле и генерируют логическую «высокую» для одного магнитного полюса или логическую «низкую» для противоположного полюса. Согласно этой информации ESC знает, когда активировать следующую последовательность коммутации или интервал.

Второй общий метод, используемый для определения положения ротора, заключается в измерении обратной электродвижущей силы или обратной ЭДС. Обратная ЭДС возникает в результате совершенно противоположного процесса генерации магнитного поля или когда движущееся или изменяющееся магнитное поле проходит через катушку, оно индуцирует ток в катушке.

Таким образом, когда движущееся магнитное поле ротора проходит через свободную катушку или неактивное, оно будет вызывать протекание тока в катушке и, как следствие, падение напряжения в этой катушке. ESC фиксирует эти падения напряжения по мере их возникновения и на основании них предсказывает или рассчитывает, когда должен произойти следующий интервал.

Так что это основной принцип работы бесщеточных двигателей постоянного тока и ESC, и он одинаков, даже если мы увеличим количество полюсов как ротора, так и статора.У нас все еще будет трехфазный двигатель, только количество интервалов увеличится, чтобы завершить полный цикл.

Здесь мы также можем упомянуть, что двигатели BLDC могут быть как опережающими, так и опережающими. Бесщеточный двигатель внутреннего хода имеет постоянные магниты внутри электромагнитов, и наоборот, двигатель внешнего запуска имеет постоянные магниты вне электромагнитов. Опять же, они используют один и тот же принцип работы, и у каждого из них есть свои сильные и слабые стороны.

Хорошо, хватит теории, так что теперь давайте продемонстрируем и посмотрим в реальной жизни то, что мы объяснили выше.Для этого мы подключим три фазы бесщеточного двигателя к осциллографу. Я подключил 3 резистора в одну точку, чтобы создать виртуальную нейтральную точку, а с другой стороны я подключил их к трем фазам двигателя BLDC.

Первое, что мы можем здесь заметить, - это три синусоиды. Эти синусоиды на самом деле являются обратной EFM, генерируемой в фазах, когда они не активны.

Мы можем видеть, что при изменении частоты вращения двигателя частота синусоидальных колебаний изменяется, а также их амплитуда.Чем выше число оборотов в минуту, тем выше частота и амплитуда синусоидальных волн обратной ЭДС. Тем не менее, двигателем являются именно эти пики, которые являются активными фазами, которые генерируют изменяющееся магнитное поле.

Мы можем заметить, что на каждом интервале присутствуют две активные и одна неактивная фаза. Например, здесь у нас активны фазы A и B, а фаза C неактивна. Тогда у нас активны фазы A и C, а фаза B неактивна и так далее.

Здесь я хотел бы дать привет Banggood.ком за предоставление мне этого осциллографа. Это Rigol DS1054Z, и это один из лучших осциллографов начального уровня по своей цене. Он имеет четыре входных канала, полосу пропускания 50 МГц, которую можно взломать до 100 МГц, имеет частоту дискретизации 1 ГГц / с и относительно большую глубину памяти 24 Мпт.

Дисплей 7 дюймов, и он действительно красивый и яркий. Он имеет различные математические функции, фильтры низких и высоких частот, декодирование SPI и I2C и многое другое. Итак, еще раз, большое спасибо Banggood.com и убедитесь, что вы проверите этот осциллограф в их магазине.

Тем не менее, это основной принцип работы бесщеточного двигателя. Если вам нужны более реальные примеры из жизни и вы научитесь управлять моторами с помощью Arduino, вы должны проверить вторую часть этого урока.

Я надеюсь, вам понравился этот урок и вы узнали что-то новое. Не стесняйтесь задавать любые вопросы в разделе комментариев ниже и не забудьте проверить мою коллекцию проектов Arduino.

Что такое шаговый двигатель и как он работает

От простого DVD-плеера или принтера в вашем доме до сложнейшего станка с ЧПУ или роботизированной руки - шаговые двигатели можно найти практически везде. Его способность совершать точные движения с электронным управлением позволила этим двигателям найти применение во многих сферах, таких как камеры наблюдения, жесткий диск, станки с ЧПУ, 3D-принтеры, робототехника, сборочные роботы, лазерные резаки и многое другое. В этой статье мы узнаем, что делает эти моторы особенными, и теорию, стоящую за ними.Мы узнаем, как использовать один для вашего приложения.

Введение в шаговые двигатели

Как и все двигатели, шаговые двигатели также имеют статор и ротор , но в отличие от обычного двигателя постоянного тока, статор состоит из отдельных наборов катушек. Количество катушек будет отличаться в зависимости от типа шагового двигателя , но пока просто поймите, что в шаговом двигателе ротор состоит из металлических полюсов, и каждый полюс будет притягиваться набором катушек в статоре.На приведенной ниже схеме показан шаговый двигатель с 8 полюсами статора и 6 полюсами ротора.

Если вы посмотрите на катушки на статоре, они расположены в виде пар катушек, подобно тому, как A и A 'образуют пару B, а B' образуют пару и так далее. Таким образом, каждая из этой пары катушек образует электромагнит, и они могут быть запитаны индивидуально с помощью схемы драйвера. Когда на катушку подается напряжение, она действует как магнит, и полюс ротора выравнивается по отношению к ней, а когда ротор вращается, чтобы приспособиться к статору, он называется одним шагом .Точно так же путем последовательного включения катушек мы можем вращать двигатель небольшими шагами, чтобы совершить полный оборот.

Типы шаговых двигателей

Существуют в основном три типа шаговых двигателей в зависимости от конструкции:

  • Шаговый двигатель с переменным сопротивлением: Они имеют ротор с железным сердечником, который притягивается к полюсам статора и обеспечивает движение при минимальном сопротивлении между статором и ротором.
  • Шаговый двигатель с постоянными магнитами: Они имеют ротор с постоянными магнитами и отталкиваются или притягиваются к статору в соответствии с приложенными импульсами.
  • Гибридный синхронный шаговый двигатель: Они представляют собой комбинацию переменного реактивного сопротивления и шагового двигателя с постоянными магнитами.

Помимо этого, мы также можем классифицировать шаговые двигатели как Униполярные и Биполярные в зависимости от типа обмотки статора.

  • Биполярный шаговый двигатель: Катушки статора на этом типе двигателя не имеют общего провода. Управление этим типом шагового двигателя отличается и является сложным, и также невозможно легко разработать схему управления без микроконтроллера.
  • Униполярный шаговый двигатель: В этом типе шагового двигателя мы можем взять центральное ответвление обеих фазных обмоток для общего заземления или для общей мощности, как показано ниже. Это облегчает управление двигателями, в униполярном шаговом двигателе также много типов

Режимы работы в шаговом двигателе

Поскольку статор ступенчатой ​​моды состоит из разных пар катушек, каждая пара катушек может возбуждаться разными способами, что позволяет модам работать во многих разных режимах.Ниже приведены широкие классификации

Full Step Mode

В режиме полного шага возбуждения мы можем добиться полного вращения на 360 ° с минимальным количеством оборотов (шагов). Но это приводит к меньшей инерции, а также вращение не будет плавным. Есть еще две классификации в режиме полного пошагового возбуждения: , однофазное пошаговое включение и два фазовых режима, .

1. Один пошаговый пошаговый или волновой пошаговый: В этом режиме только одна клемма (фаза) двигателя будет включена в любой момент времени.Это имеет меньшее количество шагов и, следовательно, может обеспечить полный поворот на 360 °. Поскольку число шагов меньше, ток, потребляемый этим методом, также очень низок. В следующей таблице приведена последовательность шаговых волн для 4-фазного шагового двигателя

Step Фаза 1 Фаза 2 Фаза 3 Фаза 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

2.Двухэтапное пошаговое включение: Как следует из названия в этом методе, две фазы будут одной. Он имеет то же количество шагов, что и волновой шаг, но поскольку две катушки находятся под напряжением одновременно, он может обеспечить лучший крутящий момент и скорость по сравнению с предыдущим методом. Хотя один недостаток в том, что этот метод также потребляет больше энергии.

Step Фаза 1 Фаза 2 Фаза 3 Фаза 4

1

1

1

0

0

2

0 1 1 0
3 0 0 1 1
4 1 0 0 1

полушаговый режим

Режим полушагового режима представляет собой комбинацию однофазного и двухфазного режимов.Эта комбинация поможет нам преодолеть вышеупомянутый недостаток обоих режимов.

Как вы уже догадались, так как мы объединяем оба метода, нам нужно выполнить 8-шаговых в этом методе, чтобы получить полный оборот. Последовательность переключения для 4-фазного шагового двигателя показана ниже

Шаг

Фаза 1

Фаза 2

Фаза 3

Фаза 4

1

1

0

0

0

2

1

1

0

0

3

0

1

0

0

4

0

1

1

0

5

0

0

1

1

6

0

0

0

1

7

1

0

0

1

8

1

0

0

0

Micro Step Mode

Микрошаговый режим является комплексным из всех, но он предлагает очень хорошую точность наряду с хорошим крутящим моментом и плавной работой.В этом методе катушка будет возбуждена двумя синусоидальными волнами, которые находятся на расстоянии 90 °. Таким образом, мы можем контролировать как направление, так и амплитуду тока, протекающего через катушку, что помогает нам увеличить количество шагов, которые двигатель должен сделать за один полный оборот. Микропереступление может занять до 256 шагов, чтобы сделать один полный оборот, что делает двигатель вращаться быстрее и плавнее.

Как использовать шаговый двигатель

Достаточно скучной теории, давайте предположим, что кто-то дает вам шаговый двигатель, например, знаменитый 28-BYJ48, и вам действительно интересно, как он работает.К этому времени вы бы поняли, что невозможно заставить эти двигатели вращаться, просто запитав их от источника питания, так как бы вы это сделали?

Давайте посмотрим на этот 28-BYJ48 шаговый двигатель .

Итак, в отличие от обычного двигателя постоянного тока, у него пять проводов всех причудливых цветов, и почему это так? Чтобы понять это, мы должны сначала узнать, как работает степпер, о котором мы уже говорили. Прежде всего, шаговые двигатели не вращают , они ступенчатые, поэтому их также называют шаговыми двигателями .Это означает, что они будут двигаться только один шаг за раз. Эти двигатели имеют последовательность катушек, присутствующих в них, и эти катушки должны быть включены определенным образом, чтобы двигатель вращался. Когда каждая катушка находится под напряжением, двигатель делает шаг, и последовательность активирования заставит двигатель делать непрерывные шаги, заставляя его вращаться. Давайте посмотрим на катушки внутри двигателя, чтобы точно знать, откуда эти провода.

Как вы можете видеть, двигатель имеет однополюсных 5-выводных катушек .Есть четыре катушки, которые должны быть включены в определенной последовательности. На красные провода подается напряжение +5 В, а остальные четыре провода будут заземлены для запуска соответствующей катушки. Мы используем любой микроконтроллер для подачи питания на эти катушки в определенной последовательности и заставить двигатель выполнять необходимое количество шагов. Опять же, есть много последовательностей, которые вы можете использовать, обычно используется , 4-ступенчатый , а для более точного управления также можно использовать 8-ступенчатый , . Таблица последовательности для 4-ступенчатого управления показана ниже.

Шаг

Катушка под напряжением

Шаг 1

А и В

Шаг 2

B и C

Шаг 3

C и D

Шаг 4

D и A

Итак, почему этот двигатель называется 28-BYJ48 ? Шутки в сторону!!! Я не знаю.Для этого мотора нет никаких технических оснований называться так; может быть, мы не должны углубляться в это. Давайте посмотрим на некоторые важные технические данные, полученные из таблицы данных этого двигателя на рисунке ниже.

Это голова, полная информации, но нам нужно взглянуть на несколько важных, чтобы знать, какой тип степпера мы используем, чтобы мы могли эффективно его программировать. Сначала мы знаем, что это шаговый двигатель 5В, так как мы подаем на красный провод напряжение 5В.Кроме того, мы также знаем, что это четырехфазный шаговый двигатель, поскольку в нем было четыре катушки. Теперь передаточное число составляет 1:64. Это означает, что вал, который вы видите снаружи, совершит один полный оборот, только если двигатель внутри будет вращаться 64 раза. Это происходит из-за зубчатых колес, которые соединены между двигателем и выходным валом, эти зубчатые колеса помогают увеличить крутящий момент.

Другие важные данные, на которые следует обратить внимание, это угол шага : 5,625 ° / 64. Это означает, что двигатель при работе в 8-ступенчатой ​​последовательности будет двигаться 5.625 градусов для каждого шага, и для выполнения одного полного поворота потребуется 64 шага (5,625 * 64 = 360).

Расчет шагов за оборот для шагового двигателя

Важно знать, как рассчитать число шагов на оборот для вашего шагового двигателя, потому что только тогда вы сможете эффективно его программировать / управлять.

Предположим, что мы будем работать с двигателем в 4-х ступенчатой ​​последовательности, поэтому угол шага будет 11,25 °, так как он равен 5,625 ° (приведено в таблице) для 8-ступенчатой ​​последовательности, это будет 11.25 ° (5,625 * 2 = 11,25).

  шагов на оборот = 360 / угол шага   Здесь 360 / 11,25 = 32 шага за оборот.  

Зачем нам нужны модули драйверов для шаговых двигателей?

Большинство шаговых двигателей будут работать только с помощью модуля привода. Это связано с тем, что модуль контроллера (микроконтроллер / цифровая схема) не сможет обеспечить достаточный ток от своих выводов ввода / вывода для работы двигателя. Поэтому мы будем использовать внешний модуль, такой как ULN2003, модуль , в качестве драйвера шагового двигателя .Существует много типов модулей драйвера, и номинальная мощность одного из них будет изменяться в зависимости от типа используемого двигателя. Основным принципом для всех модулей привода будет источник / приемник достаточного тока для работы двигателя. Кроме того, существуют также модули драйверов, в которых заранее запрограммирована логика, но мы не будем обсуждать это здесь.

Если вам интересно узнать, как вращать шаговый двигатель с помощью микроконтроллера и ИС драйвера, то мы рассмотрели много статей о его работе с различными микроконтроллерами:

Теперь я считаю, что у вас достаточно информации для управления любым шаговым двигателем, который вам необходим для вашего проекта.Давайте посмотрим на преимущества и недостатки шаговых двигателей.

Преимущества шаговых двигателей

Одним из основных преимуществ шагового двигателя является то, что он имеет превосходный контроль положения и, следовательно, может использоваться для точного управления. Кроме того, он обладает очень хорошим удерживающим моментом, что делает его идеальным выбором для робототехники. Считается, что шаговые двигатели имеют более длительный срок службы, чем обычный двигатель постоянного тока или серводвигатель.

Недостатки шаговых двигателей

Как и все двигатели, шаговые двигатели также имеют свои недостатки, так как они вращаются, делая маленькие шаги, и не могут достичь высоких скоростей.Кроме того, он потребляет энергию для удержания крутящего момента, даже когда он идеален, что увеличивает потребление энергии.

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.