Кузовной ремонт автомобиля

 Покраска в камере, полировка

 Автозапчасти на заказ

У какого двигателя обмотка ротора соединяется звездой при изготовлении


Соединение обмоток электродвигателя «треугольником» и «звездой»

На сегодняшний день асинхронные электродвигатели большой мощности отличаются надежностью работы и высокой производительностью, удобством эксплуатации и обслуживания, а также приемлемой ценой. Конструкция этого типа двигателя позволяет выдерживать сильные механические перегрузки.

Как известно, из основ электротехники, основными частями любого двигателя являются статичный статор, и вращающейся внутри его ротор.

Оба эти элемента состоят из токопроводящих обмоток, при этом статорная обмотка находиться в пазах магнитопровода с соблюдением расстояния в 120 градусов. Начало и конец каждой обмотки выведены в электрическую распределительную коробку и установлены в два ряда.

При подаче напряжения от трехфазной электросети на обмотки статора создается магнитное поле. Именно оно заставляет ротор вращаться.

Как подключить электродвигатель правильно – знает опытный электрик.

Подключение асинхронного двигателя к электрической сети осуществляется только по следующим схемам: «звезда», «треугольник» и их комбинации.

Определение типа способа соединения

Выбор того или иного подсоединения зависит от:

  • надежности энергосети;
  • номинальной мощности;
  • технических характеристик самого двигателя.

Каждое соединение имеет свои плюсы и минусы в работе. В паспорте двигателя от завода-изготовителя, а также на металлическом лейбле на самом устройстве обязательно указана схема его подключения.

При соединении «Звезда» все концы статорных обмоток сходятся водной точке, а напряжение поступает  на начало каждой из них. Подключение двигателя «звездой» гарантирует плавный, безопасный пуск агрегата, но на начальном этапе наблюдается значительная потеря нагрузки.

Подключение «треугольником» подразумевает последовательное соединение обмоток в замкнутую структуру, т.е.начало первой фазы соединяют с концом второй и. т.д.

Такое соединение дает выходную мощность до 70% от номинальной, но в таком случае существенно возрастают пусковые токи, что может спровоцировать поломку электродвигателя.

Существует также комбинированное соединение «звезда-треугольник» (такой значок Y/Δ обязательно должен значиться на корпусе мотора). Представленная  схема вызывает  скачки тока в момент переключения, которые приводят к тому, что скорость вращения ротора быстро снижается, а потом  постепенно входит в норму.

Комбинированные схемы актуальны для электромоторов мощностью свыше 5 кВт.

Зависимость выбора от напряжения

Сейчас в промышленности более применимы асинхронные трехфазные электродвигатели отечественного производства, рассчитанные на номинальное напряжение от сети220/380 В. (агрегаты на 127/220 В уже редко используются).

Схема подключения «треугольник»- единственно верная для подключения к российским энергосетям зарубежных электромоторов номинальным напряжением 400-690 В.

Подключение трехфазного двигателя любой мощности осуществляется по определенному правилу: агрегаты низкой мощности присоединяются по схеме «треугольник», а высокомощные – только «звездой».

Так электромотор прослужит долго и проработает без сбоев.

Способ «звезды» применяется при подключении трехфазных асинхронных двигателей номинальным напряжением 127/220 В к однофазным сетям.

Как снизить пусковые токи электродвигателя?

Явление значительного повышения пусковых токов при запуске высокомощных устройств, подсоединенных по схеме Δ, приводит в сетях с перегрузкой к кратковременному падению напряжения ниже допустимого значения. Все это объясняется особой конструкцией асинхронного электродвигателя, у которого ротор с большой массой обладает высокой инерционностью. Поэтому на начальном этапе работы мотор перегружается, особенно это актуально для роторов центробежных насосов, турбинных компрессоров, вентиляторов, станочного оборудования.

Чтобы снизить влияние всех этих электротехнических процессов, используют подключение электродвигателя «звездой» и «треугольником». Когда двигатель набирает обороты, ножи специального переключателя (пускателя с несколькими трехфазными контакторами) переводит обмотки статора со схемы Y на Δ.

Для реализации смены режимов кроме пускателя нужно специальное реле времени, благодаря которому происходит  временная задержка 50-100 мс при переключении и защита от трехфазного короткого замыкания.

Сама процедура использования комбинированной схемы Y/ Δ эффективно помогает уменьшить пусковые токи мощных трехфазных агрегатов. Происходит это следующим образом:

При подаче напряжения 660 В по схеме «треугольник», каждая обмотка статора получает 380 В (√3 раза меньше), а, следовательно, по закону Ома, в 3 раза уменьшается сила тока. Поэтому при запуске в свою очередь в 3 раза снижается мощность.

Но такие переключения возможны только для моторов с номинальным напряжением 660/380 В при включении их в сеть с такими же значениями напряжения.

Опасно подключать электродвигатель с номинальным напряжением 380/220 В в сеть 660/380 В, его обмотки могут быстро перегореть.

И также помните, что вышеописанные переключения недопустимо применять для электромоторов, у которых на валу размещена нагрузка без инерции, к примеру, вес лебедки или сопротивление поршневого компрессора.

Для такого оборудования устанавливают специальные трехфазные электрические двигатели с фазным ротором, где реостаты уменьшают значение токов при пуске.

Чтобы изменить направление вращения электромотора, необходимо сменить местами две любые фазы сети при любом типе подключения.

Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели (рубильники).

Роторный двигатель - Energy Education

Рисунок 1. Цикл роторного двигателя. Он забирает воздух / топливо, сжимает его, зажигает, обеспечивая полезную работу, а затем истощает газ. [1]

Роторные двигатели или Двигатели Ванкеля представляют собой тип двигателя внутреннего сгорания, наиболее широко используемый в Mazda RX-7, который преобразует тепло от сгорания смеси воздуха и топлива под высоким давлением в полезную работу для остальной части машина. Его уникальной характеристикой является треугольный ротор, который выполняет те же задачи, что и поршень поршневого двигателя, но совершенно другим способом. [2]

Ротор находится в корпусе овальной формы и выполняет общий четырехтактный цикл двигателя внутреннего сгорания, как показано на рисунке 1. Ротор соединен с выходным валом, который вращается в 3 раза быстрее, чем ротор (внутренний круг, обозначенный на рисунке буквой «B»). Этот цикл описан ниже и происходит 3 раза по для каждого вращения ротора: [2]

  1. Впуск : Это начинается, когда конец ротора проходит через впускной канал.В этот момент камера наименьшая, и по мере ее вращения камера расширяется, втягивая смесь воздуха и топлива. Как только конец ротора проходит через впускной канал, он переходит к ступени сжатия, в то время как следующая поверхность ротора начинает этот шаг заново.
  2. Сжатие : Когда ротор продолжает вращаться, воздушно-топливная смесь сжимается из-за уменьшения размеров камеры. Это необходимо для следующей части, которая зажигает эту смесь.
  3. Зажигание : Сжатая смесь воспламеняется от свечей зажигания, а значительное повышение давления заставляет ротор расширяться.Это силовой ход, обеспечивающий полезную работу. Часто необходимы две свечи зажигания, чтобы обеспечить равномерное зажигание по всей камере. Отработавший газ расширяется в камере, пока наконечник ротора не пройдет через выпускное отверстие.
  4. Выхлоп : Как только наконечник проходит через это отверстие, выхлопные газы высокого давления могут проходить через выхлопное отверстие. Ротор продолжает вращаться, пока конец его поверхности не пройдет через выпускное отверстие, наконечник пройдет через впускное отверстие, и цикл повторяется.

Интересной частью этого цикла является то, что каждый шаг происходит в одно и то же время , просто в разных камерах.Это дает три такта на каждый оборот ротора.

Отличия от поршневого двигателя

Помимо другого метода завершения четырехтактного цикла, роторные двигатели имеют различные преимущества и недостатки по сравнению с более распространенными поршневыми двигателями: [2]

  • Меньше движущихся частей : роторный двигатель с двумя роторами имеет три движущихся части - два ротора и выходной вал - в то время как обычные поршневые двигатели имеют не менее 40.Это дает роторным двигателям лучшую надежность.
  • Сглаживатель : Ротор постоянно вращается в одном направлении, в отличие от поршневых двигателей, поршни которых резко меняют направление. Они также уравновешены весами, которые уменьшают внутренние вибрации. Подача мощности также более непрерывна из-за трехтактных ходов на каждый оборот ротора.
  • Медленнее : Ротор вращается со скоростью, равной одной трети скорости выходного вала, поэтому основные движущиеся части движутся медленнее, чем в поршневом двигателе.Это повышает надежность.

Недостатки

Производственные затраты могут быть выше из-за низкой популярности этих двигателей. Они также обычно потребляют больше топлива, чем другие двигатели, из-за своей низкой степени сжатия и, следовательно, имеют более низкий тепловой КПД, что затрудняет им соблюдение норм выбросов.

для дальнейшего чтения

Рекомендации

,

4 различия между современными и старыми автомобильными двигателями

Задумывались ли вы когда-нибудь, в чем разница между старыми и новыми автомобильными двигателями? Как и в случае с любой технологией, эффективность и сложность постепенно улучшаются, как и следовало ожидать. Как оказалось довольно много.

Несмотря на то, что базовая концепция остается относительно неизменной, современные автомобили со временем претерпели ряд небольших улучшений. В следующей статье мы сосредоточимся на 4 интересных примерах.

Давайте посмотрим под капотом времени, не так ли?

Если это не сломано, не исправить это

Основные принципы самых первых автомобилей все еще используются сегодня. Одно из главных отличий заключается в том, что современные автомобили являются результатом необходимости повышения мощности двигателей и, в конечном итоге, эффективности использования топлива. Частично это было давление рынка со стороны потребителей, а также более крупные рыночные силы.

Может быть полезно подумать о аналогии между волком и собакой.Они имеют одно и то же наследие, имеют схожие характеристики, но в современном пригороде было бы непросто, а другой процветал бы.

Прежде чем мы начнем, мы дадим краткий обзор того, как работает двигатель внутреннего сгорания.

Герой Александрийского раннего паровоза. Источник: Research Gate

Двигатель внутреннего сгорания, по сути, берет такой источник топлива, как бензин, смешивает его с воздухом, сжимает и зажигает его. Это вызывает серию небольших взрывов, которые, в свою очередь, приводят в движение поршни вверх и вниз.Эти поршни прикреплены к коленчатому валу, который переводит возвратно-поступательное линейное движение поршней во вращательное движение, поворачивая коленчатый вал. Коленчатый вал, в свою очередь, передает это движение через трансмиссию, которая передает мощность на колеса автомобиля. Просто верно?

Ну, это намного сложнее, чем вы ожидаете.

Вот простое объяснение основ:

Интересно, что преобразование возвратно-поступательного усилия во вращательное усилие не является чем-то новым.Очень ранний паровой двигатель был разработан героем Александрии в 1-м веке нашей эры (на фото выше).

Предполагается, что даже более старые устройства коленчатого вала были созданы во времена династии Хань в Китае.

1. Современные двигатели более эффективны

Сжигание топлива, как и бензина, не особенно эффективно. Из всей потенциальной химической энергии в нем около , 14-30%, превращается в энергию, которая фактически движет автомобиль. Остальное теряется на холостом ходу, паразитных потерях, жаре и трении.

Современные двигатели прошли долгий путь, чтобы выделять как можно больше энергии из топлива. Например, технология прямого впрыска не позволяет предварительно смешивать топливо и воздух до достижения цилиндра, как старые двигатели. Скорее, топливо впрыскивается непосредственно в цилиндры. Это дает около 1% улучшения .

Турбокомпрессоры

используют выхлопные газы для питания турбины, которая выталкивает дополнительный воздух (то есть больше кислорода) в цилиндры для дальнейшего повышения эффективности до 8% .Изменение фаз газораспределения и деактивация цилиндров дополнительно повышают эффективность, позволяя двигателю использовать столько топлива, сколько ему действительно нужно.

2. Максимальная мощность

Как однажды сказал Джереми Кларксон: «В настоящее время все дело в MPG, а не в MPH» или, возможно, это был не он.

У

современных автомобилей лучшая топливная экономичность, они также намного мощнее.

Например, Chevrolet Malibu 1983 года имел 3,8-литровый V-6 двигатель мог извергать 110 лошадиных сил .Для сравнения, версия 2005 года имела 2,2-литровый рядный четырехцилиндровый двигатель мощностью 144 лошадиных сил. Не слишком потертый.

3. Размер это все, или это?

Этот привод, без каламбура, для повышения эффективности двигателей также со временем уменьшил свои размеры. Это не совпадение. Производители автомобилей узнали, что вам не нужно делать что-то большее, чтобы сделать его более мощным.

Все, что вам нужно сделать, это заставить объект работать умнее. Та же самая технология, которая сделала двигатели более эффективными, имела побочный эффект от их уменьшения.

Ford F-серии грузовиков являются отличным примером. F-150 имел две версии в 2011 году. 3,5-литровый V-6 двигатель, который генерирует 365 лошадиных сил и 5,0-литровый V-8 , который генерирует 360 лошадиных сил .

Хорошо, вы могли бы сказать, но разве не было 6,2-литрового V-8 , который давал 411 лошадиных сил р? Почему, да, но факт, что V-6 двигатель может почти конкурировать с большим V-8 по мощности, говорит о многом.

4. Долой старый

Современные двигатели также являются результатом постепенной замены механических частей на электронные. Это связано с тем, что электрические детали, как правило, менее подвержены износу, как механические.

Они также требуют менее частой настройки, как таковой. Такие детали, как насосы, все чаще заменяются электронными, а не их аналоговыми предками.

Карбюраторы

были заменены корпусами дросселей и электронными системами впрыска топлива.Распределители и крышки были заменены независимыми катушками зажигания, контролируемыми ЭБУ. Кроме того, датчики контролируют все, более или менее.

Вы также можете утверждать, что новые автомобили менее безопасны.

Последнее слово

Хотя на базовом уровне современные и старые автомобильные двигатели работают по одному и тому же принципу, современные двигатели претерпели много постепенных улучшений с течением времени. Основной движущей силой была борьба за эффективность, а не за власть. Хороший набор побочных эффектов привел к тому, что современные двигатели стали относительно более мощными и в целом меньше.Постоянно растущая зависимость от электронных систем управления и мониторинга постепенно заменяет аналоговые, в лучшую или в худшую сторону.

В целом современные автомобильные двигатели более эффективны, меньше, относительно мощнее, умнее и менее подвержены неизбежным механическим повреждениям. С другой стороны, ремонт и обслуживание теперь являются более высококвалифицированным и трудоемким делом. Если цена за повышение эффективности - это увеличение принятия сложности, только вы можете быть судьей.

Через: Team-BHP, HowStuffWorks

,

Электродвигатель | Британика

Самый простой тип асинхронного двигателя показан в поперечном сечении на рисунке. Трехфазный набор обмоток статора вставлен в пазы утюга статора. Эти обмотки могут быть подключены либо в конфигурации «вай», обычно без внешнего подключения к нейтральной точке, либо в конфигурации «треугольник». Ротор состоит из цилиндрического железного сердечника с проводниками, размещенными в пазах вокруг поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора проводящим торцевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя. Encyclopædia Britannica, Inc.

Основу работы асинхронного двигателя можно разработать, предположив сначала, что обмотки статора подключены к трехфазному источнику электропитания и что набор из трех синусоидальных токов формы, показанной на рисунке, течет в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений в цикле.Для простоты показана только центральная петля проводника для каждой фазовой обмотки. В момент времени t 1 на рисунке ток в фазе a является максимально положительным, в то время как в фазах b и c половина этого значения отрицательна. В результате создается магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным наружным значением вверху и максимальным внутренним значением внизу. В момент времени т 2 на рисунке (т.е.то есть, одна шестая часть цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и в фазе a является половинным положительным значением. Результат, как показано для t 2 на рисунке, снова представляет собой синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Изучение распределения тока для т 3 , т 4 , т 5 и т 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, объединенный эффект трех одинаковых синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, заключается в создании вращающегося магнитного поля с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом, пропорциональном величине и скорости поля относительно проводников.Поскольку проводники ротора закорачиваются вместе на каждом конце, эффект будет вызывать токи в этих проводниках. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. Структура токов ротора для момента т 1 на рисунке показана на этом рисунке. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки (т.е.крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент действует для ускорения ротора и вращения механической нагрузки. Когда скорость вращения ротора увеличивается, его скорость относительно скорости вращения поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному уменьшению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, требуемому на этой скорости нагрузкой, при этом избыточный крутящий момент не доступен для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, возникающие в короткозамкнутых проводниках ротора. Encyclopædia Britannica, Inc.

Механическая выходная мощность должна обеспечиваться электрической входной мощностью. Исходные токи статора, показанные на рисунке, достаточны для создания вращающегося магнитного поля. Для поддержания этого вращающегося поля в присутствии токов ротора на фигуре необходимо, чтобы обмотки статора передавали дополнительный компонент синусоидального тока такой величины и фазы, чтобы исключить влияние магнитного поля, которое могло бы возникнуть в противном случае. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке представляет собой сумму синусоидальной составляющей для создания магнитного поля и другой синусоиды, ведущую первую на четверть цикла или на 90 °, чтобы обеспечить требуемую электрическую мощность. Второй или силовой компонент тока находится в фазе с напряжением, приложенным к статору, тогда как первый или намагничивающий компонент отстает от приложенного напряжения на четверть цикла, или на 90 °. При номинальной нагрузке этот намагничивающий компонент обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными напрямую к трехфазному источнику постоянного напряжения и частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между линиями для двигателей относительно низкой мощности (например, от 0,5 до 50 кВт) до примерно 15 кВ от линий к линии для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения в сопротивлении обмотки статора, напряжение питания соответствует скорости изменения магнитного потока в статоре машины.Таким образом, при питании с постоянной частотой и постоянном напряжении величина вращающегося магнитного поля поддерживается постоянной, а крутящий момент приблизительно пропорционален составляющей мощности тока питания.

При использовании асинхронного двигателя, показанного на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника питания 60 Гц полевая скорость составляет 60 оборотов в секунду, или 3600 в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать требуемое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость, как правило, на 0,5-5% ниже, чем полевая скорость (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости можно получить с помощью источника постоянной частоты, построив машину с большим числом пар магнитных полюсов, в отличие от двухполюсной конструкции на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту составляют 120 f / p , где f - частота в герцах (циклов в секунду), а p - количество полюсов (которое должно быть четное число).Данная железная рама может быть намотана для любого из нескольких возможных чисел пар полюсов с помощью катушек, которые охватывают угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимому току катушки. Таким образом, номинальная мощность для рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна числу пар полюсов. Наиболее распространенные синхронные скорости для 60-герцовых двигателей составляют 1800 и 1200 оборотов в минуту.

,

Смотрите также


avtovalik.ru © 2013-2020
Карта сайта, XML.